Work done (W) by a force in displacing a body through a displacement x is given by
= Fx cos θ
Where θ is the angle between the applied force and displacement.
The S.I. unit of work is joule, CGS unit is erg and its dimensions are [ML2T–2].
1 joule = 107 erg
  • When θ = 0° then W = Fx
  • When θ is between 0 and π/2 then
W = Fx cos θ = positive  
  • When θ = π/2 then W = Fx cos 90° = 0 (zero)
Work done by centripetal force is zero as in this case angle θ = 90°
  • ∴ When θ is between π/2 and π then
W = Fx cos θ  = negative


When the force is an arbitrary function of position, we need the techniques of calculus to evaluate the work done by it. The figure shows Fx as function of the position x. We begin by replacing the actual variation of the force by a series of small steps.
The area under each segment of the curve is approximately equal to the area of a rectangle. The height of the rectangle is a constant value of force, and its width is a small displacement Δx. Thus, the step involves an amount of work ΔWn = Fn Δxn. The total work done is approximately given by the sum of the areas of the rectangles.
i.e.,   W ≈ Δxn.
As the size of the steps is reduced, the tops of the rectangle more closely trace the actual curve shown in figure. If the limit Δx → 0, which is equivalent to letting the number of steps tend to infinity, the discrete sum is replaced by a continuous integral.
Thus, the work done by a force Fx from an initial point A to final point B is
The work done by a variable force in displacing a particle from x1 to x2
= area under force displacement graph

CAUTION : When we find work, we should be cautious about the question, work done by which force? Let  us take an example to understand this point. Suppose you are moving a body up without acceleration.
Work done by applied force  
Work done by gravitational force


It is the capacity of doing work. Its units and dimensions are same as that of work.


The energy possessed by a body by virtue of its position or configuration is called potential energy. Potential energy is defined only for conservative forces. It does not exist for non-conservative forces.

Let us consider a spring, its one end is attached to a rigid wall and other is fixed to a mass m. We apply an external force on mass m in the left direction, so that the spring is compressed by a distance x.
If spring constant is k, then energy stored in spring is given by
P.E. of compressed spring = ½kx2
Now if the external force is removed, the mass m is free to move then due to the stored energy in the spring, it starts oscillating

When a body is raised to some height, above the ground, it acquires some potential energy, due to its position. The potential energy due to height is called gravitational potential energy. Let us consider a ball B, which is raised by a height h from the ground.
In doing so, we do work against gravity and this work is stored in the ball B in the form of gravitational potential energy and is given by
W = Fapp.h = mgh = gravitational potential energy ...(i)
Further if ball B has gravitational P.E. (potential energy) Uo at ground and at height h, Uh, then  
Uh–Uo =mgh ...(ii)
If we choose Uo= 0 at ground (called reference point) then absolute gravitational P.E of ball at height h is
Uh = mgh ...(iii)
In general, if two bodies of masses m1 and m2 are separated by a distance r, then the gravitational potential energy is


The energy possessed by a body by virtue of its motion is called kinetic energy.
The kinetic energy Ek is given by
Ek = ½ mv2 ...(i)
Where m is mass of body, which is moving with velocity v. We know that linear momentum (p) of a body which is moving with a velocity v is given by
p = mv ...(ii)
So from eqs. (i) and (ii), we have
This is the relation between momentum and kinetic energy.
The graph between and p is a straight line
The graph between and is a rectangular hyperbola
The graph between Ek and is a rectangular hyperbola

  • Work done by the conservative force in moving a body in a closed loop is zero.
Work done by the non-conservative force in moving a body in a closed loop is  non-zero.
  • If the momenta of two bodies are equal then the kinetic energy of lighter body will be more.
  • If the kinetic energies of two bodies are same then the momentum of heavier body will be more.


Let a number of forces acting on a body of mass m have a resultant force and by acting over a displacement x (in the direction of ), does work on the body, and there by changing its velocity from u (initial velocity) to v (final velocity). Kinetic energy of the body changes.
So, work done by force on the body is equal to the change in kinetic energy of the body.
This expression is called Work energy (W.E.) theorem.


The sum of the potential energy and the kinetic energy is called the total mechanical energy.
The total mechanical energy of a system remains constant if only conservative forces are acting on a system of particles and the work done by all other forces is zero.
i.e., ΔK + ΔU = 0
or  Kf – Ki + Uf – Ui = 0
or  Kf + Uf = Ki + Ui = constant


Energy is of many types – mechanical energy, sound energy, heat energy, light energy, chemical energy, atomic energy, nuclear energy etc.

In many processes that occur in nature energy may be transformed from one form to other. Mass can also be transformed into energy and vice-versa. This is according to Einstein’s mass-energy equivalence relation,  E = mc2.
In dynamics, we are mainly concerned with purely mechanical energy.

The study of the various forms of energy and of transformation of one kind of energy into another has led to the statement of a very important principle, known as the law of conservation of energy.

"Energy cannot be created or destroyed, it may only be transformed from one form into another. As such the total amount of energy never changes".

  1. Work done against friction on horizontal surface = μ mgx and work done against force of friction on inclined plane = (μmg cosθ) x where μ = coefficient of friction.
  2. If a body moving with velocity v comes to rest after covering a distance ‘x’ on a rough surface having coefficient of friction μ, then (from work energy theorem), 2μ gx = v2. Here retardation is
  3. Work done by a centripetal force is always zero.
  4. Potential energy of a system decreases when a conservative force does work on it.
  5. If the speed of a vehicle is increased by n times, then its stopping distance becomes n2 times and if momentum is increased by n times then its kinetic energy increases by n2 times.
  6. Stopping distance of the vehicle
  7. Two vehicles of masses M1 and M2 are moving with velocities u1 and u2 respectively. When they are stopped by the same force, their stopping distance are in the ratio as follows :
    Since the retarding force F is same in stopping both the vehicles. Let x1 and x2 are the stopping distances of vehicles of masses M1 & M2 respectively, then
where u1 and u2 are initial velocity of mass M1 & M2 respectively & final velocity of both mass is zero.
Let us apply a retarding force F on M1 & M2, a1 & a2 are the decelerations of M1 & M2 respectively. Then from third equation of motion :
....(iii a)
and ....(iii b )
If t1 & t2 are the stopping time of vehicles of masses
M1 & M2 respectively, then from first equation of motion (v = u+at)
....(iv a)
and ....(iv b)  
Then by rearranging equation (i), (iii) & (iv), we get
  1. If
  2. If
  3. If M1u1 = M2u1 ⇒ t1 = t2 and  
  4. Consider two vehicles of masses M1 & M2 respectively.
If they are moving with same velocities, then the ratio of their stopping distances by the application of same retarding force is given by
and let M2 > M1 then x1 < x2
lighter mass will cover less distance then the heavier mass
And the ratio of their retarding times are as follows :  
  1. If kinetic energy of a body is doubled, then its momentum becomes times,
  2. If two bodies of masses m1 and m2 have equal kinetic energies, then their velocities are inversely proportional to the square root of the respective masses. i.e.
  1. The spring constant of a spring is inversely proportional to the no. of turns i.e.  
    or kn = const.
Greater the no. of turns in a spring, greater will be the work done i.e. W ∝ n
The greater is the elasticity of the spring, the greater is the spring constant.
  1. Spring constant : The spring constant of  a spring is inversely proportional to length i.e., or Kl = constant.
    1. If a spring is divided into n equal parts, the spring constant of each part = nK.
    2. If spring of spring constant K1, K2, K3 .......... are connected in series, then effective force constant
    3. If spring of spring constant K1, K2, K3........... are connected in parallel, then effective spring constant  
      Keff  = K1 + K2 + K3 +.............


Power of the body is defined as the time rate of doing work by the body.
The average power Pav over the time interval Δt is defined by
And the instantaneous power P is defined by
Power is a scalar quantity
The S.I. unit of power is joule per second
1 joule/sec = 1watt
The dimensions of power are [ML2T–3]
(force is constant over a small time interval)
So instantaneous power (or instantaneous rate of working) of a man depends not only on the force applied to body, but also on the instantaneous velocity of the body.


Collision between two bodies is said to take place if either of two bodies come in physical contact with each other or even when path of one body is affected by the force exerted due to the other.
  • Elastic collision : The collision in which both the momentum and kinetic energy of the system remains conserved is called elastic collision.
Forces involved in the interaction of elastic collision are conservative in nature.
  • Inelastic collision : The collision in which only the momentum of the system is conserved but kinetic energy is not conserved is called inelastic collision.
Perfectly inelastic collision is one in which the two bodies stick together after the collision.
Forces involved in the interaction of inelastic collision are non-conservative in nature.


It is the ratio of velocity of separation after collision to the velocity of approach before collision. i.e., e = | v1 – v2 |/ | u1 – u2 |
Here u1 and u2 are the velocities of two bodies before collision and v1 and v2 are the velocities of two bodies after collision.
  • 0 < e < 1 (Inelastic collision)
Collision between two ivory balls, steel balls or quartz ball is nearly elastic collision.
  • For perfectly elastic collision, e = 1
  • For a perfectly inelastic collision, e = 0


When a body of mass m collides obliquely against a stationary body of same mass then after the collision the angle between these two bodies is always 90°.


Let two bodies of masses M1 and M2 moving with velocities u1 and u2 along the same straight line, collide with each other. Let u1>u2.  Suppose v1 and v2 respectively are the velocities after the elastic collision, then:
According to law of conservation of momentum
From law of conservation of energy
Relative velocity of a Relative velocity of a
body before collision body after collision
Solving eqs. (1) and (2) we get,

From eqns. (4) and (5), it is clear that :
  • If M1 = M2 and u2 = 0 then v1 =  0 and v2 = u1. Under this condition the first particle comes to rest and the second particle moves with the velocity of first particle after collision. In this state there occurs maximum transfer of energy.
  • If M1>> M2 and (u2=0) then, v1 = u1, v2 = 2u1 under this condition the velocity of first particle remains unchanged and velocity of second particle becomes double that of first.
  • If M1 << M2 and (u2 = 0) then v1 = –u1 and v2 = 0 under this condition the second particle remains at rest while the first particle moves with the same velocity in the opposite direction.
  • If M1 = M2 = M but u2 ≠0 then v1 = u2  i.e., the particles mutually exchange their velocities.
  • If second body is at rest i.e., u2 = 0, then fractional decrease in kinetic energy of mass M1, is given by


Let two bodies A and B collide inelastically. Then from law of conservation of linear momentum
M1u1 + M2u2 = M1v1+M2v2 ...(i)
e ...(ii)
From eqns.(i) and (ii), we have,
Loss in kinetic energy (–ΔEk) = initial K.E. – final K.E
Negative sign indicates that the final kinetic energy is less than initial kinetic energy.


In this collision, the individual bodies A and B move with velocities u1 and u2 but after collision move as a one single body with velocity v.
So from law of conservation of linear momentum, we have
M1u1+M2u2=(M1+M2)V ...(i)
or ...(ii)
And loss in kinetic energy, –ΔEk = total initial K.E – total final K.E
or, ...(iii)


This is the case of collision in two dimensions. After the collision, the particles move at different angle.
We will apply the principle of conservation of momentum in the mutually perpendicular direction.
Along x-axis, m1u1 = m1v1 cosθ + m2 v2 cosφ
Along y-axis, 0 = m1v1 sinθ - m2 v2 sinφ

  1. Suppose, a body is dropped from a height h0 and it strikes the ground with velocity v0. After the (inelastic) collision let it rise to a height h1. If v1 be the velocity with which the body rebounds, then the coefficient of restitution.
  1. If after n collisions with the ground, the velocity is vn and the height to which it rises be hn, then
  1. When a ball is dropped from a height h on the ground, then after striking the ground n times , it rises to a height hn = e2n ho where e = coefficient of restitution.
  2. If a body of mass m moving with velocity v, collides elastically with a rigid ball, then the change in the momentum of the body is 2 m v.
    1. If the collision is elastic then we can conserve the energy as
    1. If two particles having same mass and moving at right angles to each other collide elastically then after the collision they also move at right angles to each other.
    2. If a body A collides elastically with another body of same mass at rest obliquely, then after the collision the two bodies move at right angles to each other, i.e. (θ + φ) =
  1. In an elastic collision of two equal masses, their kinetic energies are exchanged.
  2. When two bodies collide obliquely, their relative velocity resolved along their common normal after impact is in constant ratio to their relative velocity before impact (resolved along common normal), and is in the opposite direction.

Want to know more

Please fill in the details below:


Latest IITJEE Articles$type=three$c=3$author=hide$comment=hide$rm=hide$date=hide$snippet=hide

Latest NEET Articles$type=three$c=3$author=hide$comment=hide$rm=hide$date=hide$snippet=hide


Admissions,1,Alternating Current,60,AP EAMCET 2020,1,Basic Maths,2,BCECE 2020,1,best books for iit jee,2,best coaching institute for iit,1,best coaching institute for iit jee preparation,1,best iit jee coaching delhi,1,best iit jee coaching in delhi,2,best study material for iit jee,4,BITSAT Registration 2020,1,Blog,62,books for jee preparation,1,books recommended by iit toppers,3,Capacitance,3,CBSE,1,CBSE accounts exam,1,CBSE boards,1,CBSE NEET,9,cbse neet 2019,3,CBSE NEET 2020,1,cbse neet nic,1,Centre of Mass,2,Chemistry,58,Class 12 Physics,15,coaching for jee advanced,1,coaching institute for iit jee,2,Collision,2,COMEDK UGET 2020 Application Form,1,COMEDK UGET 2020 Exam Form,1,COMEDK UGET news,1,CUCET 2020,2,Current Electricity,4,CVR college,1,Digestion and Absorption Notes PDF,1,Electromagnetic Induction,3,Electronics,1,Electrostatics,3,Energy,1,Engineering & Medical,1,Fluid Mechanics,4,Gravitation,2,GUJCET 2020 Application Form,1,Heat,4,iit admission,1,iit advanced,1,iit coaching centre,3,iit coaching centre in delhi,2,iit coaching classes,2,iit coaching in delhi,1,iit coaching institute in delhi,1,iit entrance exam,1,iit entrance exam syllabus,2,iit exam pattern,2,iit jee,5,iit jee 2019,3,iit jee advanced,2,iit jee books,3,iit jee coaching,2,iit jee exam,3,iit jee exam 2019,1,iit jee exam pattern,3,iit jee institute,1,iit jee main 2019,2,iit jee mains,3,iit jee mains syllabus,2,iit jee material,1,iit jee online test,3,iit jee practice test,3,iit jee preparation,6,iit jee preparation in delhi,2,iit jee preparation time,1,iit jee preparation tips by toppers,2,iit jee question paper,1,iit jee study material,3,iit jee study materials,2,iit jee syllabus,2,iit jee syllabus 2019,2,iit jee test,3,iit preparation,2,iit preparation books,5,iit preparation time table,2,iit preparation tips,2,iit syllabus,2,iit test series,3,IITJEE,100,Important Biology Notes for NEET Preparation,1,IPU CET,1,JEE Advanced,83,jee advanced exam,2,jee advanced exam pattern,1,jee advanced paper,1,JEE Books,1,JEE Coaching Delhi,3,jee exam,3,jee exam 2019,6,JEE Exam Pattern,2,jee exam pattern 2019,1,jee exam preparation,1,JEE Main,85,jee main 2019,4,JEE Main 2020,1,JEE Main 2020 Application Form,2,JEE Main 2020 news,2,JEE Main 2020 Official Answer Key,1,JEE Main 2020 Registration,1,JEE Main 2020 Score,1,JEE Main application form,1,jee main coaching,1,JEE Main eligibility criteria,3,jee main exam,1,jee main exam 2019,3,jee main online question paper,1,jee main online test,3,JEE Main Paper-2 Result,1,jee main registration,2,jee main syllabus,2,JEE mains 2020,1,jee mains question bank,1,jee mains test papers,3,JEE Mock Test,2,jee notes,1,jee past papers,1,JEE Preparation,2,jee preparation in delhi,1,jee preparation material,4,JEE Study Material,1,jee syllabus,6,JEE Syllabus Chemistry,1,JEE Syllabus Maths,1,JEE Syllabus Physics,1,jee test series,3,KCET - 2020,1,Kinematics,1,Latest article,5,Latest Articles,61,Latest News,34,latest news about neet exam,1,Laws of Motion,2,Magnetic Effect of Current,3,Magnetism,3,MHT CET 2020,2,MHT CET 2020 exam schedule,1,Modern Physics,1,NCERT Solutions,15,neet,3,neet 2019,1,neet 2019 eligibility criteria,1,neet 2019 exam date,2,neet 2019 test series,2,NEET 2020,2,NEET 2020 Application Form,1,NEET 2020 Eligibility Criteria,1,NEET 2020 Registration,1,neet application form,1,neet application form 2019 last date,1,Neet Biology Syllabus,1,Neet Books,3,neet eligibility criteria,3,neet exam 2019,7,neet exam application,1,neet exam date,1,neet exam details,1,neet exam pattern,6,neet exam pattern 2019,2,neet examination,1,neet mock test 2019,1,Neet Notes,3,Neet Online Application Form,3,neet online test,2,neet past papers,1,neet physics syllabus,1,neet practice test,2,NEET preparation books,1,neet qualification marks,1,NEET question paper 2019,1,neet question papers,1,neet registration,1,Neet Study Material,3,neet syllabus,6,neet syllabus 2019,5,NEET Syllabus 2020,1,neet syllabus chemistry,1,neet syllabus for biology,1,neet syllabus for physics,1,neet test series,1,neet ug 2019,2,news,5,online study material for iit jee,1,Optical Instruments,1,Physics,110,physics books for iit jee,1,Power,1,Practical Physics,1,Quiz,5,Ray Optics,1,Rotational Motion,3,SHM,3,Simple Harmonic Motion,3,study materials for iit jee,1,Study Notes,110,study notes for iit jee,1,Thermodynamics,4,TS EAMCET Notification,2,Units and Dimensions,1,UPSEE 2020,1,UPSEE 2020 Application Form,2,UPSEE EXAM,1,Vectors,2,VITEE Application form,1,Wave Motion,3,Wave Optics,1,WBJEE 2020 Admit Card,1,WBJEE 2020 Answer Key,1,Work,1,
Work, Power and Energy | Physics Notes for IITJEE/NEET
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS CONTENT IS PREMIUM Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy