## nth Term of Special series - Basic

For example, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic progression with common difference of 2. If the initial term of an arithmetic progression is and the common difference of successive members is d, then the nth term of the sequence ( ) is given by: , and in general .

Q1.  nth term of the series 13/1 + (13 + 2 3)/(1+3) + (13 + 23 +33)/(1 + 3 + 5) + .......will be

•  (n2 - 2n + 1)/4
•  (n2 + 2n + 1)
•  (n2 + 2n + 1)/4
•   (n2 + 2n + 1)/2

(n2 + 2n + 1)/4

Q2. The nth term of series 1/1 + (1+2)/2 + (1+2+3)/3 + ..... will be

•  (n+1)/2
•  (n-1)/2
•  (n2+1)/2
•  (n2-1)/2

(n+1)/2

Q3.  If a1 = a2 = 2 , an = an-1 (n>2) then a5 is

•   1
•  -1
•  0
•   -2

-1

## Want to know more

Please fill in the details below:

## Latest NEET Articles\$type=three\$c=3\$author=hide\$comment=hide\$rm=hide\$date=hide\$snippet=hide

Name

ltr
item
BEST NEET COACHING CENTER | BEST IIT JEE COACHING INSTITUTE | BEST NEET & IIT JEE COACHING: nth Term of Special series_MCQ_Basic Level
nth Term of Special series_MCQ_Basic Level