## Expansion of Binomial theorem - MCQ

Compared to other sections, Mathematics is considered to be the most practice demanding subject. If praticed regularly, mathematics can help students to secure a meritorious position in the exam. These questions are very important in achieving your success in Exams after 12th.

Q1. The approximate value of (1.0002)3000 is

•  1.6
•  1.4
•  1.8
•  1.2

Q2. If (1+by)n=(1+8y+24y2+.........), then the value of b and n are respectively

•  4, 5
•  2, -4
•  2, 4
•  -2, 4

Q3. If 15C3r=15Cr+3 then r is equal to

•  5
•  4
•  3
•  2

Q4. If mC1=nC2, then correct statement is

•  2m=n
•  2m=n(n+1)
•  2m=n(n-1)
•  2n = m(m – 1)

Q5. In the expansion of (x+a)n, the sum of odd terms is P and sum of even terms is Q, then the value of (P2-Q2) will be

•  (x2+a2)n
•  (x2-a2)n
•  (x-a)2n
•  (x+a)2n

Q6. The positive integer just greater than (1+0.0001)10000 is

•  4
•  5
•  2
•  3

Q7. (√2+1)6-(√2-1)6=

•  101
•  70√2
•  140√2
•  120√2

Q8. The value of (√5+1)5-(√5-1)5 is

•  252
•  352
•  452
•  532

Q9. The greatest integer less than or equal to (&sqrt;2+1)6 is

•  196
•  197
•  198
•  199

Q10. Let n be an odd natural number greater than 1. Then the number of zeros at the end of the sum 99n+1 is

•  3
•  4
•  2
•  None of these

## Want to know more

Please fill in the details below:

## Latest NEET Articles\$type=three\$c=3\$author=hide\$comment=hide\$rm=hide\$date=hide\$snippet=hide

Name

ltr
item
BEST NEET COACHING CENTER | BEST IIT JEE COACHING INSTITUTE | BEST NEET & IIT JEE COACHING: Expansion of Binomial theorem - MCQ
Expansion of Binomial theorem - MCQ
https://1.bp.blogspot.com/-2OIHTXvzXyU/X5gNw2cQUHI/AAAAAAAAAOY/D2gY13UqSYIOQiJuBf3U3fFPczUZjO32gCLcBGAsYHQ/w400-h209/Cleariitmedical%2BMCQ%2BImage%2BTemplate.jpg
https://1.bp.blogspot.com/-2OIHTXvzXyU/X5gNw2cQUHI/AAAAAAAAAOY/D2gY13UqSYIOQiJuBf3U3fFPczUZjO32gCLcBGAsYHQ/s72-w400-c-h209/Cleariitmedical%2BMCQ%2BImage%2BTemplate.jpg
BEST NEET COACHING CENTER | BEST IIT JEE COACHING INSTITUTE | BEST NEET & IIT JEE COACHING
https://www.cleariitmedical.com/2020/10/expansion-of-binomial-theorem-mcq.html
https://www.cleariitmedical.com/
https://www.cleariitmedical.com/
https://www.cleariitmedical.com/2020/10/expansion-of-binomial-theorem-mcq.html
true
7783647550433378923
UTF-8

STAY CONNECTED