[LATEST]\$type=sticky\$show=home\$rm=0\$va=0\$count=4\$va=0

Definition, Equation of the Circle - Advance Quiz

Mathematics is an important subject in SSC,DSSB & Other Exams. .

Q1. y=mx+c is a chord of a circle of radius a and the diameter of the circle lies along x-axis and one end of this chord is origin. The equation of the circle described on this chord as diameter is :
•  (1+m^2)(x^2+y^2)-2ax=0
•  (1+m^2)(x^2+y^2)-2a(x+my)=0
•  n(m+n)
•  (1+m^2)(x^2+y^2)-2a(x-my)=0
Solution
(1+m^2)(x^2+y^2)-2a(x+my)=0

Q2.If y=2x is a chord of the circle x^2+y^2-10x=0, then the equation of the circle of which this chord is a diameter, is :
•  x^2+y^2-2x+4y=0
•  x^2+y^2+2x+4y=0
•  x^2+y^2+2x-4y=0
•  x^2+y^2-2x-4y=0
Solution
x^2+y^2-2x-4y=0

Q3.  The circle on the chord x cos⁡Î±+y sin⁡Î±=p of the circle x^2+y^2=a^2 as diameter has the equation:
•  x^2+y^2-a^2-2p(x cos⁡Î±+y sin⁡Î±-p)=0
•  x^2+y^2+a^2+2p(x cos⁡Î±-y sin⁡Î±+p)=0
•  x^2+y^2-a^2+2p(x cos⁡Î±+y sin⁡Î±+p)=0
•  x^2+y^2-a^2-2p(x cos⁡Î±-y sin⁡Î±-p)=0
Solution
x^2+y^2-a^2-2p(x cos⁡Î±+y sin⁡Î±-p)=0

Q4. The equation of circle which touches the axes of coordinates and the line x/3+y/4=1 and whose centre lies in the first quadrant is x^2+y^2-2cx-2cy+c^2=0, where c is
•  1
•  2
•  3
•  6
Solution
6

Q5.The equation of a circle which touches both axes and the line 3x-4y+8=0 and lies in the third quadrant is
•  x^2+y^2-4x+4y-4=0
•  x^2+y^2-4x+4y+4=0
•  x^2+y^2+4x+4y+4=0
•  x^2+y^2-4x-4y-4=0
Solution
x^2+y^2+4x+4y+4=0

Q6. Equation of the circle which touches the lines x=0,y=0 and 3x+4y=4 is
•  x^2-4x+y^2+4y+4=0
•  6a^2
• r(< a)
•  x^2+4x+y^2-4y+4=0
Solution
6a^2

Q7.The equation of the circumcircle of the triangle formed by the lines y+√3 x=6,y-√3 x=6 and y = 0, is
•  x^2+y^2-4y=0
•  x^2+y^2+4x=0
•  x^2+y^2=25
•  x^2+y^2+4x=12
Solution
x^2+y^2=25

Q8. A variable circle passes through the fixed point A(p,q) and touches x-axis. The locus of the other end of the diameter through A is
•  (y-q)^2=4px
•  T(x-q)^2=4py
•  2x^2+2y^2-3x=0
•  (x-p)^2=4qy
Solution
(x-p)^2=4qy

Q9.If a circle passes through the points of intersection of the coordinate axes with the lines Î»x-y+1=0 and x-2y+3=0, then the value of  is
•  1
•  2
•  3
•  4
Solution
2

Q10. Equation to the circles which touch the lines 3x-4y+1=0,4x+3y-7=0 and pass through (2, 3) are
•  (x-2)^2+(y-8)^2=25
•  5x^2+5y^2-12x-24y+31=0
•  Both (a) and (b)
• None of these
Solution
Both (a) and (b)

Want to know more

Please fill in the details below:

Latest NEET Articles\$type=three\$c=3\$author=hide\$comment=hide\$rm=hide\$date=hide\$snippet=hide

Name

ltr
item
BEST NEET COACHING CENTER | BEST IIT JEE COACHING INSTITUTE | BEST NEET, IIT JEE COACHING INSTITUTE: Definition, Equation of the Circle-Advance