## [LATEST]\$type=sticky\$show=home\$rm=0\$va=0\$count=4\$va=0

In mathematics, an arithmetico–geometric sequence is the result of the term-by-term multiplication of a geometric progression with the corresponding terms of an arithmetic progression.

Q1.  The sum of infinite terms of the following series 1 + 4/5 + 7/52 + 10/53 .....will be

•   35/4
•  3/16
•  3/8
•   35/16

35/16

Q2.  The sum of the series 1+ 3x+ 6x2+10x3+.......infinity will be

•  1/(1-x)
•  1/(1+x)
•  1/(1+x)3
•  1/(1-x)3

1/(1-x)3

Q3.  21/4.41/8.81/16.161/32 is equal to

•   1
•  2
•  3/2
•   5/2

2

Q4.  The sum of 1 + 2/5 + 3/52 + 4/53 upto n terms is

•   25/16 - ((4n+5)/(16 * 5n-1))
•   3/4 - ((3n+5)/(16 * 5n-1))
•  3/7 - ((3n+7)/(16 * 5n-1))
•  1/2 - ((5n+1)/(3 * 5n-1))

25/16 - ((4n+5)/(16 * 5n-1))

Q5.  The sum of i – 2 – 3i + 4 + ....... upto 100 terms is

•  50(1-i)
•  25i
•  25(1+i)
•  100(1-i)

50(1-i)

## Want to know more

Please fill in the details below:

## Latest NEET Articles\$type=three\$c=3\$author=hide\$comment=hide\$rm=hide\$date=hide\$snippet=hide

Name

ltr
item
BEST NEET COACHING CENTER | BEST IIT JEE COACHING INSTITUTE | BEST NEET, IIT JEE COACHING INSTITUTE: Arithmetio-geometric progression_MCQ_Advance MCQ